
Approaches to Measuring Entanglement in Chemical
Magnetometers
M. Tiersch,*,†,‡ G. G. Guerreschi,†,§ J. Clausen,†,‡ and H. J. Briegel†,‡

†Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Technikerstrasse 21A, A-6020 Innsbruck,
Austria
‡Institute for Theoretical Physics, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
§Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

ABSTRACT: Chemical magnetometers are radical pair systems such as
solutions of pyrene and N,N-dimethylaniline (Py−DMA) that show
magnetic field effects in their spin dynamics and their fluorescence. We
investigate the existence and decay of quantum entanglement in free
geminate Py−DMA radical pairs and discuss how entanglement can be
assessed in these systems. We provide an entanglement witness and
propose possible observables for experimentally estimating entanglement
in radical pair systems with isotropic hyperfine couplings. As an
application, we analyze how the field dependence of the entanglement
lifetime in Py−DMA could in principle be used for magnetometry and
illustrate the propagation of measurement errors in this approach.

I. INTRODUCTION

Photochemical reactions that involve intermediate radical pairs
are known to exhibit magnetic field effects.1−3 The influence of
external magnetic fields on these reactions provides a way to
use these reactions for measuring and estimating magnetic
fields. For example, the ability of birds and other animals to
sense magnetic fields4−6 has been suggested to be based on this
spin-chemical mechanism.7,8 The radical pair mechanism is the
model that describes how magnetic field effects arise in these
systems.1−3

Many elements of the radical pair mechanism bear a
resemblance to elements in quantum computation procedures
or quantum communication protocols. For example, after
photoexcitation and charge transfer the initial state of the
radical pair is a spin singlet, i.e., a maximally entangled Bell-
state, which is a resource state for quantum communication
tasks like quantum state teleportation.9,10 The spin state of the
radical pair changes due to the presence of the external
magnetic field and that of the nuclear spins. Finally, the
backward electron transfer completes the chemical reaction by
projecting the radical pair spins to the spin singlet state. In
quantum information terminology this projection is known as a
Bell-measurement, which also occurs in quantum state
teleportation, for example. These similarities raise the question
whether or not magnetic field sensing by means of the radical
pair mechanism can also be understood as a simple form of
quantum information processing. A strong indication of
whether or not it is quantum information processing rather
than classical information processing is the presence of
quantum entanglement10 between the constituents of the
system.

Solutions with two molecular species pyrene (Py) and N,N-
dimethylaniline (DMA) form radical pairs after a photo-
excitation-induced electron transfer and are known to exhibit
magnetic field effects.1−3,11 We consider the spin-correlated
radical pairs that are formed by one Py and one DMA molecule,
in which the spin of the two unpaired electrons is initially in a
singlet state. After separation in solution, e.g., by diffusion, the
time evolution of the radical pair spins is governed by the
strength of the external magnetic field and the hyperfine
interaction with nuclear spins of the respective molecule, which
we assume to be isotropic due to fast molecular tumbling. In
this situation, the Hamiltonian that generates the dynamics of
electron and nuclear spins is given by
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where the outer sum runs over both molecules of the radical
pair and the inner sum is over the Nm nuclei of molecule m.
The electron spin angular momentum operators are ℏSm and
the nuclear spin operators are ℏImk. All nuclear spins are
isotropically coupled to the respective electron spin with
hyperfine coupling strengths λmk. With the Bohr magneton μB
and the electron g-factor g ≈ 2, the hyperfine coupling strengths
are given in units of millitesla.
Entanglement in radical pair systems has been found in

numerical studies of a realistic example of freely diffusing Py−
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DMA radical pairs12 and radical pair model systems.13 Here, we
revisit entanglement in Py−DMA radical pairs and discuss how
entanglement could be experimentally detected in these
systems. Finally, the arising step structure in the magnetic
field dependence of the entanglement lifetime in free Py−DMA
radicals is analyzed for its suitability for magnetic field
measurements.

II. ENTANGLEMENT LIFETIME OF FREE PY−DMA
RADICAL PAIRS

After the creation of the radical pair by photoinduced electron
transfer, e.g., Py•− + DMA•+, due to the speed of such process,
it is a standard assumption that the electron spin state is well
described by the singlet state ρ(0) = |S⟩⟨S|. All the nuclear spins
are in the thermal state that, at room temperature, is described
by the normalized identity matrix.1−3,11 After having diffused
apart, the exchange and dipolar interaction between the radicals
can be neglected and the time evolution of electron and nuclear
spins is described by the Hamiltonian (1). Tracing over the
nuclear degrees of freedom, the state of the electron spins is
then given by

ρ = | ⟩⟨ | ⊗ †⎜ ⎟
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where U(t) = exp(−iHt/ℏ) and d is the dimension of the
nuclear Hilbert space. It is the electron spin state, which we
consider here. Interactions of the radical pair spins due to re-
encounters and the reaction kinetics are not considered in the
present treatment, which thus focuses on the spin correlations
of geminate free radicals.
The initial singlet state of the two radical pair spins is an

entangled state. A state vector |ψ⟩ of a composite system is
called entangled if it cannot be written as a product of state
vectors of the individual systems, that is, for a composite system
formed by subsystems A and B it is not of the form |ψ⟩ =
|ψA⟩⊗|ψB⟩. Otherwise |ψ⟩ is called separable, that is, not
entangled. For mixed states ρ entanglement is defined by
means of decompositions of ρ into convex sums of pure states,
e.g., ρ = Σipi|ψi⟩⟨ψi| with probabilities pi that sum to one. The
state ρ is only entangled if it is necessary to use at least one
entangled pure state in all of the generally infinite many ways of
decomposing ρ into pure states.
To decide whether a given state ρ is entangled is a hard

mathematical problem,10 but it has been solved for the case of
two spin-1/2 systems. Furthermore, the entanglement of such a
system can be quantified by an entanglement measure. Such is
the concurrence14 given by C(ρ) = max{0, (λ1)

1/2 − (λ2)
1/2 −

(λ3)
1/2 − (λ4)

1/2}, where the λi are the eigenvalues in decreasing
order of the matrix ρ(σ2⊗σ2) ρ*(σ2⊗σ2) with σ2 being the
second Pauli matrix and ρ* denoting complex conjugation of
the matrix entries in the standard product basis.
Although the initial state of the radical pair spins is the singlet

and thus at short times the entanglement in Py−DMA is mainly
due to the large singlet contribution to the spin state, the mere
presence of coherences in ρ is generally not sufficient for
entanglement. For example, the following family of states of
two spin-1/2 particles,
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contains coherences |↑↓⟩⟨↓↑| for all p ≠ 0 but it is entangled
only for p > 1/3.15 A more general consideration leads to

further insights into the existence of entanglement as compared
to that of coherences. Let us consider all possible quantum
states for a given system, which form a continuous convex set of
large dimension, e.g., all density operators of two spin- particles
can be parametrized by 15 real parameters. The subset of states
without coherences, i.e., all density matrices that are diagonal in
the product basis, is of volume zero within this set, whereas the
set of separable (not entangled) states is of finite volume,
convex, and centered around the maximally mixed state, which
is the density matrix given by the normalized identity matrix.
The dynamics of a quantum system given by a time-dependent
density operator ρ(t) can be visualized as a continuous curve in
the set of states. Dynamics that take the state asymptotically
toward an equilibrium state without coherences will generally
exhibit coherences that also only decay asymptotically. This
situation can be different when considering entanglement
instead. For dynamics that take an initially entangled system
asymptotically toward a state that is not entangled and lies
within the volume of separable states, there exists a point in
time when the curve ρ(t) crosses the boundary between
entangled and separable states. That is, at this point in time the
state is not entangled any longer, but the dynamics may
continue inside the set of separable states leaving the state
separable. The disentanglement at finite times, in contrast to an
asymptotic decay, is sometimes referred to as “entanglement
sudden death” in the terminology of the quantum information
community.16

The result of calculating the time-evolution of the free radical
pair spins and subsequently testing whether or not the state
ρ(t) is entangled is summarized in Figure 1 for different

strengths of the external magnetic field. This reproduces the
findings of the entanglement lifetime for Py−DMA in ref 12 at
finer resolution. Initially, the spins are always entangled because
they start in a singlet state but entanglement decreases in time
due to the decoherence introduced by the electrons interacting
with the nuclear spin bath,17 and vanishes eventually. The latest
time at which entanglement exists defines the entanglement
lifetime TE = sup{t|ρ(t) entangled}. As a function of the

Figure 1. (Left) entanglement of the two spin degrees of freedom of
geminate free radical pairs as a function of time t and the external
magnetic field B for Py−DMA radicals. Hyperfine coupling constants
are taken from ref 25. Data points for which the state is entangled are
shaded. Data are calculated in steps of Δt = 0.04 ns and ΔB = 0.2 mT.
(Right) details of entanglement for the first step around 3.8 mT with
ΔB = 0.02 mT where a revival of entanglement occurs. The
entanglement lifetime TE is defined by the last time at which the
state is entangled and therefore shows a discontinuity in this region.
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external magnetic field, TE(B) shows an increasing trend with
several steps. The overall growth of the entanglement lifetime is
caused by the Zeeman shift of the |↑↑⟩ and |↓↓⟩ states, which
are increasingly separated in energy from the singlet and triplet-
zero states. For large B the time evolution of ρ(t) is therefore
effectively confined to a smaller dimensional subspace that is
spanned by the states |↑↓⟩ and |↓↑⟩. When ρ(t) is fully
contained in this subspace, the coherences |↑↓⟩⟨↓↑| that may
appear are sufficient for entanglement and thus almost all mixed
states in this subspace are entangled. Another characteristic
feature in Figure 1 is the steps in the entanglement lifetime.
Due to disappearance and revival of entanglement for field
strengths around 3.80 mT (Figure 1 right) the quantity TE(B)
is discontinuous and jumps from TE(3.74 mT) = 4.30(2) ns to
TE(3.76 mT) = 6.62(2) ns. A revival of entanglement is a
hallmark of the non-Markovian nature of the mesoscopic
environment of nuclear spins.

III. ENTANGLEMENT WITNESS
Entanglement is not an observable but, similar to entropy, for
example, is a nonlinear property of the state of two or more
quantum systems. In the present case, we consider the
entanglement of the two electron spins of the molecules,
which form the spin-correlated radical pair, and derive an
optimal entanglement witness for radical pairs like Py−DMA.
In general, deciding whether two quantum systems are

entangled requires the knowledge of the full density operator of
the combined system. Constructing the density operator
experimentally via quantum state tomography generically
requires the measurement of a tomographically complete set
of observables, e.g., all correlation operators σi

(1) ⊗ σj
(2) for two

spin-1/2 systems, where σi
(a) is a Pauli matrix or the identity

matrix for subsystem a. Observing how entanglement decays in
time via state tomography has been undertaken for systems of
entangled photons in ref 18, for example.
Measuring correlation operators for radical pair systems is

challenging because all the different correlation operators
cannot be directly measured. Furthermore, rotations of the
individual electron spins, U1 ⊗ U2, are typically not available in
electron spin resonance (ESR) experiments because the two
electrons of the radical pair cannot be addressed individually as
they can neither be resolved spatially nor in frequency space
due to similar g-factors.
Although entanglement is not an observable, it is possible to

construct observables, so-called entanglement witnesses,19 from
which entanglement can be inferred for somebut not all
quantum states. Here we define an observable W called an
entanglement witness that has expectation values ⟨W⟩ > 0 for
some entangled states and ⟨W⟩ ≤ 0 for all separable states.
Note that this definition differs by a sign from the conventional
definition.19 A measurement outcome ⟨W⟩ > 0 is only sufficient
to demonstrate that a state is entangled, because ⟨W⟩ ≤ 0 only
allows for the conclusion that the state was either separable or
entangled but not detected by the witness. Therefore,
entanglement witnesses are always tailored to specific entangled
states. A witness is optimal for a specific quantum state ρ if
⟨W⟩ρ is maximal; i.e., the witness detects all entangled quantum
states that lie between ρ and the set of separable states. That is,
for an optimal witness there is a family of states for which ⟨W⟩ρ
> 0 holds if and only if ρ is entangled and, conversely, ⟨W⟩ρ ≤ 0
implies that a ρ of this family is not entangled. In contrast to
the procedure of a full state tomography, an entanglement
witness requires only a single observable to be measured even if

it is a collective observable on both subsystems. Furthermore,
an entanglement witness provides a lower bound to the amount
of entanglement of the state,20,21 and such a bound can be
tightened for a suitable entanglement measure in the case of an
optimal witness.22

For a general mixed state of two spins ρ, a sufficiently large
overlap with a maximally entangled state, e.g., the singlet state
|S⟩ = (|↑↓⟩ − |↓↑⟩)/√2, already provides an entanglement
witness. In ref 12 the singlet probability ⟨S|ρ|S⟩ has been
proposed as such an entanglement witness for radical pair
systems. It provides a lower bound to the amount of
entanglement between the two spins as quantified by the
entanglement measure concurrence C(ρ):

ρ ρ≥ ⟨ | | ⟩ −C S S( ) max{0, 2 1} (4)

that is, a singlet fraction above 1/2 is sufficient to show that the
two spins are entangled.23 However, a large overlap with the
singlet state alone is not necessary for entanglement because
the triplet-zero state |T0⟩ = (|↑↓⟩ + |↓↑⟩)/√2, which is also
often attained by radical pairs, is also a maximally entangled
state whereas ⟨T0|S⟩ = 0. This observation motivates the
construction of an entanglement witness for radical pair
systems from a one parameter family of maximally entangled
states,

ϕ ϕ= | ⟩⟨ | −ϕW 2 1 (5)

with

ϕ| ⟩ = | ↑ ↓ ⟩ + | ↓ ↑ ⟩ϕ−( e )/ 2i
(6)

which includes as special cases the witness related to the singlet
fraction, Wπ, and to the T0-state, W0. For any separable pure
state |ψ⟩ = (α1|↓⟩ + β1|↑⟩) ⊗ (α2|↓⟩ + β2|↑⟩) with
normalization |αi|

2 + |βi|
2 = 1 the expectation value of the

entanglement witness is ⟨Wϕ⟩ = ⟨ψ|Wϕ|ψ⟩ ≤ 0, which also
extends to mixed separable states by linearity.
Systems like Py−DMA exhibit only isotropic hyperfine

couplings and hence the total spin of all electrons and nuclei
along the direction of the external magnetic field is conserved.
Given that the nuclear spins are initially completely
depolarized, an initial state with fixed total magnetization of
the electrons, e.g., the singlet state, remains under the dynamics
generated by the Hamiltonian (1) in block-diagonal form in the
product basis {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}:
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The entanglement measure concurrence, evaluated for ρ(t) of
this form, yields

ρ = | | −C c a( ) max{0, } (8)

Note that, with the present choice of basis, |ϕ⟩ is a column
vector taking the form |ϕ⟩ = (0, 1, e−iϕ, 0)T/√2. Representing
the matrix element of the spin coherence of ρ as c = |c|eiγ, the
expectation value of the entanglement witness (5) is

ρ γ ϕ⟨ ⟩ = = | | − −ϕ ϕW W c aTr[ ] cos( ) (9)

For the pertinent entanglement witness for isotropic radical
pairs we thus recover that it provides a lower bound to the
concurrence for an arbitrary ϕ, and quantifies concurrence
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exactly for an optimal witness that is tailored to the quantum
state with ϕ = γ:

ρ ϕ= ⟨ ⟩ ≥ ⟨ ⟩γ ϕC W W( ) max{0, } for all (10)

To measure the entanglement of ρ exactly by means of this
witness, it is necessary to know γ, which is a parameter of ρ, and
thus generally time-dependent. A time-resolved measurement
of the witness with a fixed ϕ gives a lower bound to the
entanglement of ρ(t). Following the entanglement dynamics of
a time-dependent state ρ(t) exactly therefore requires some
initial knowledge of γ(t), which can be obtained as a first guess
from a theoretical calculation or by optimization of this angle at
each point in time. Experimentally, it is therefore necessary, in
general, to carry out a time-resolved measurement of the time-
dependent observable Wγ. Note that microscopically the
measurement of the witness at different times is done at
different radical pair molecules or subensembles, possibly even
at different runs of the experiment. We assume, however, that
all these molecules are prepared and evolve identically and
independent from one another.
Measuring just the entanglement lifetime TE is simpler

because it is only necessary to measure the observable Wϕ with
a single constant ϕ that is fixed to ϕ = γ(TE). The measurement
parameter ϕ = γ(TE) can either be precomputed from a
sufficiently reliable theory or found by experimentally
optimizing ϕ to give positive measurement results for the
latest possible time.

IV. EXPERIMENTAL CONSIDERATIONS
Given a system like Py−DMA, i.e., a system with quantum
states of the form (7), only the entanglement witness Wϕ with
ϕ = γ(t) needs to be measured to determine the entanglement.
A single observable for measuring entanglement is an
improvement over measuring a set of correlation operators
and calculating an entanglement measure. However, measuring
the witness is still a nontrivial operation on both radical pair
molecules. The entanglement witness can be straightforwardly
measured in an experiment only for few choices of ϕ; e.g.,Wπ is
given by the singlet fraction, which is proportional to the singlet
fluorescence intensity in Py−DMA systems. Thus, approaches
on how to measure the witness for general ϕ or equivalent
alternatives are necessary.
A first simplification is to combine several witnesses with

fixed angles ϕ that promise to be easily obtainable in
experiment instead of general time-dependent ϕ. Would it
thus be possible to combine a rather straightforward time-
resolved measurement of the singlet fraction with another
measurement to obtain the same information as in ⟨Wϕ⟩(t)?
After all, the singlet fraction already provides a lower bound on
entanglement. The answer is yes. For example, one can
combine measurements of three distinct witnesses with static ϕ
= 0, π/2, π to replace a measurement with the time-dependent
optimal ϕ = γ(t). These three expectation values for the generic
state (7) are

γ⟨ ⟩ = +| | −W c acos0 (11)

γ⟨ ⟩ = −| | −πW c acos (12)

γ⟨ ⟩ = −| | −πW c asin/2 (13)

which are essentially given by the T0-fraction, the singlet
fraction, and the T0-S coherence, respectively. These three
measurements determine the three real parameters of ρ. If one

relies on the promise of the special form (7) of the density
matrix, one can easily evaluate the concurrence (8). The
advantage of the witness is that the corresponding lower
bounds on entanglement do not rely on such promise. A better
bound, optimal for (7) but valid for all states, can be obtained
by measuring Wγ, with γ determined by inverting (11)−(13).
That is, by measuring these three witnesses one effectively
performs state tomography of ρ of the special form (7).
It is conceivable that these three measurements may be

obtained with current state-of-the-art techniques such as
electron spin resonance (ESR) experiments. There, the electron
spin state can be directly addressed with magnetic pulses and
different spin components can be observed by applying pulse
sequences and measuring the free induction decay. The spin
dynamics taking place at time scales of few nanoseconds,
however, seem to be at the limit of usual ESR setups.
Another observable that yields information about parameters

of the density matrix and may be easier to access in experiment
than a generic Wϕ is the total electron spin S1 + S2. For a single
radical pair in state ρ(t) of form (7) all components of the total
spin give

⟨ + ⟩ = =S S i x y z0 , ,i i
1 2 (14)

For a single radical pair molecule, all individual outcomes of a
measurement of S1

i + S2
i are restricted to values −1, 0, and +1.

Because ρ(t) is typically not an eigenstate of S1
i + S2

i for all
times, the fluctuations of the measurement outcomes reveal
information about the triplet character of the electron spins, e.g.

Δ + = ⟨ + ⟩ =S S S S a[ ( )] ( )z z z z
1 2

2
1 2

2
(15)

γΔ + = ⟨ + ⟩ = + | |S S S S c[ ( )] ( ) (1 cos )/2x x x x
1 2

2
1 2

2

(16)

The coherence between singlet and triplet components,
however, cannot be deduced from such polarization measure-
ments.
A measurement that realizes a projection for arbitrary ϕ can

be realized in principle by a short magnetic pulse parallel to the
external magnetic field that inscribes an additional phase
difference between the spin-up and down state of one of the
radicals, followed by a singlet projection. However, trying to
generate such a relevant phase shift on one of the radicals
during a typical time span of the spin dynamics (∼1 ns) by an
external pulsed field requires enormous field gradients to
generate a sufficient field difference over typical nanometer
separation distances of radical pairs in solution. A promising
alternative seems to be magnetic nanometer-sized particles,
which can supply very localized fields to one of the radicals.24

Let us finally comment on experimental details of observing
just the singlet fraction as a lower bound to entanglement. It
can be obtained by measuring the intensity of exciplex
fluorescence of re-encountering radical pairs, i.e., by applying
a threshold filter to the fluorescence intensity I ∝ ⟨S|ρ(t)|S⟩.
The singlet probability for Py−DMA radicals is depicted in
Figure 2.
In experimental setups with freely diffusing radical pairs the

re-encounter time scale is given by the classical stochastic
diffusion process in solution, which is usually modeled as an
exponential distribution with a time scale on the order of ∼2
ns.25 That is, geminate radical pairs typically do not exhibit re-
encounters at times when the singlet fraction drops below 1/2,
but have reacted before. Measurements trying to detect when
the singlet fraction drops below 1/2 will therefore suffer from

The Journal of Physical Chemistry A Article

dx.doi.org/10.1021/jp408569d | J. Phys. Chem. A 2014, 118, 13−2016



low intensity signals. The measurement signals can be
improved by increasing the probability for the radical pair to
re-encounter at later times, e.g., by mounting the radical pair
molecules on optically switchable molecules that provide a re-
encounter of the radical pairs at a time determined by the
experimenter as proposed in ref 26. Alternatively, the
recombination at longer times can be enhanced by enclosing
the radicals in micelles27 or connecting them with flexible
polymer chains.28,29 These approaches are experimentally
simpler, but lack the additional control offered by molecular
optical switches.
For a given re-encounter dynamics, contained in the re-

encounter probability distribution pre(t), the singlet fluores-
cence yield until time t is given by

∫ τ τ ρ τΦ = ⟨ | | ⟩t p S S( ) d ( ) ( )
t

S
0 re (17)

Here we assume that upon a re-encounter the radical pair
reacts, thus no longer existing as a radical pair, and that
fluorescence occurs immediately upon a re-encounter in a
singlet state. From a time-resolved measurement of the
fluorescence intensity, I(t) ∝ dΦS(t)/dt, the singlet fraction
can be inferred according to

ρ⟨ | | ⟩ =
Φ

∝S t S
p t

t
t

I t
p t

( )
1
( )

d ( )
d

( )
( )re

S

re (18)

for known pre(t). The constants of proportionality that have
been neglected here include the radical pair concentration in
solution, excitation (radical pair creation) efficiency, and
detection angle, for example. Most of the systematic influences
on the intensity can be experimentally determined by a
fluorescence measurement at t = 0 for which ρ(0) = |S⟩⟨S| is
known. For estimating the singlet fraction from the
fluorescence intensity a precise knowledge of pre rather than a
phenomenological model is needed, including possible effects
of multiple re-encounters,30 or the circumvention thereof by
designing and imposing pre(t) experimentally.26

V. MAGNETIC FIELD ESTIMATION

The field dependence of the entanglement lifetime (Figure 1)
as discovered in ref 12 exhibits steep increases for some
magnetic fields and, due to its definition, even discontinuities.
Thus, measurements of the entanglement lifetime can in
principle be used to infer or calibrate magnetic fields.
The magnetic field effects on the entanglement lifetime are

qualitatively different from usually considered observables such
as the singlet yield or radical pair concentration, because the
entanglement lifetime is a property of the spin state of the
intermediate reactants, in contrast to a time-averaged reaction
yield, for example.
At first sight the pronounced field-dependence of the

entanglement lifetime suggests an extreme sensitivity for
magnetic field measurements. For statements about the
sensitivity, however, it is necessary to consider the whole
process that is required to estimate magnetic fields via the
entanglement lifetime. The time dependence of the entangle-
ment between the two electron spins is a simple consequence
of the Hamiltonian (1). The same is true for the entanglement
lifetime shown in Figure 1, and there is nothing wrong or
unphysical with the sharp field dependence in this curve, as it
was emphatically claimed in a recent paper.31

It is an entirely different and independent question how this
entanglement, its time evolution, and the time of its
disappearance (or “sudden death”16) due to the hyperfine
interaction (1) is measured in experiment. Such an undertaking
will comprise at least two tasks. First, to experimentally access
the regime of the plot with large values of the predicted
entanglement lifetime (e.g., for values of B larger than 4 mT),
one needs to control the system in such a way that the quantum
state of the two electron spins has enough time to evolve before
the two radicals reencounter and possibly recombine such that
the pair simply vanishes. One possibility, as already discussed in
section IV, would be to keep the radicals separated in space,
e.g., by mounting them on molecular switches (and thus
controlling the time of recombination).26 Second, it requires a
concise description of the procedure how the entanglement is
measured, e.g., in terms of witnesses. On the basis of such a
description, one can then infer how uncertainties in these
measurements translate into uncertainties for its lifetime and
thus into precision limits for the magnetic field estimation.
Ignoring these important details may lead to erroneous
conclusions regarding the achievable sensitivity in such a
hypothetical magnetometer.31

In the following we discuss how limits to the sensitivity of a
magnetometer using the entanglement lifetime as a signature
arise when taking into account the actual observables that need
to be measured.

A. Measurement Errors. When experimentally determin-
ing the entanglement and its lifetime by measuring an optimal
entanglement witness, errors of the measurement translate into
errors of the inferred entanglement lifetime. These errors also
influence the precision with which a magnetic field could be
measured by means of the entanglement lifetime.
Let us consider a time-resolved measurement of the optimal

entanglement witness Wγ. For each measurement time t one
obtains with sufficiently many experimental samples the mean
measurement result ⟨Wγ⟩ and a confidence region around the
mean [⟨Wγ⟩ − ΔWγ

(−), ⟨Wγ⟩ + ΔWγ
(+)]. The errors ΔWγ

(±)(t) ≥
0 to either side of the mean are generally asymmetric, but we

Figure 2. Time-dependent singlet probability of re-encountering Py−
DMA radical pairs for different magnetic fields, depicted by the
intensity of the shading in the plot and labeled contour lines, which is
an alternative and experimentally more straightforwardly accessible
signature. Exciplex fluorescence intensity I ∝ ⟨S|ρ(t)|S⟩ above 0.5 gives
a lower bound to radical pair entanglement. The contour 0.5 shows
similar steep increases in the magnetic field dependence as the
entanglement lifetime TE (dashed).
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omit the additional notation of the superscript (±) in what
follows.
Starting with an entangled state, the entanglement lifetime

TE is defined as the last time when entanglement exists, that is,
afterward ⟨Wγ⟩(t) ≤ 0 for all t > TE. Due to the experimental
uncertainties in the measurement of Wγ there will be
uncertainties in the last time where ⟨Wγ⟩(t) drops below
zero. These uncertainties given by the confidence interval for
TE can be constructed from the obtained confidence interval of
Wγ(t) by intersection with the zero line.
The boundaries of the confidence interval for TE are

determined by the first and last time, TE,min and TE,max
respectively, at which the confidence interval of all Wγ(t)
includes the zero. That is, an initially entangled state exhibits
⟨Wϕ⟩(t) > 0 for t < TE and if entanglement can be certified the
whole confidence interval takes only positive values for t ≈ 0.
As entanglement decays, the witness finally takes negative
values. The confidence interval thus touches the axis ⟨Wϕ⟩ = 0
for the first time when ⟨Wϕ⟩(TE,min) − ΔWϕ(TE,min) = 0, which
defines TE,min = TE − ΔTE, and for the last time when
⟨Wϕ⟩(TE,max) + ΔWϕ(TE,max) = 0, which defines TE,max = TE +
ΔTE. These intersections define the confidence interval for the
entanglement lifetime. Note, that for large errors ΔWϕ it may
happen that the zero axis is always included in the confidence
region, that is, ⟨Wϕ⟩(t) + ΔWϕ(t) > 0 for all times t > TE,
which means that an upper bound to the entanglement lifetime
cannot be given experimentally because it cannot be
conclusively shown that entanglement actually disappears.
B. Numerical Example. As an illustration of the analysis,

we simulate an experiment that measures the optimal
entanglement witness including experimental errors for a freely
diffusing Py−DMA radical pair in solution. We simulate a time-
resolved measurement of the entanglement witness Wϕ by
doing statistics over 1000 measurements of independently
prepared and time-evolved states for each time step t in steps of
0.04 ns. To the numerically exact calculation of the spin
dynamics for Py−DMA generated by (1) we add experimental
errors for each measurement by introducing small amounts of
noise to the exact state. For each time step we analyze the
ensemble of 1000 noisy states constructed according to

ρ ρ ρ= − ϵ + ϵΔt t( ) (1 ) ( )0

where ρ0 is the numerically obtained state evolved according to
(1) and for each measurement the states Δρ are independently
sampled uniformly from the state space of mixed states of two
spins (Hilbert−Schmidt distributed). This sampling guarantees
that the ensemble of ρ(t) remains physical as opposed to
simply adding noise to the matrix elements of the exact state. In
total, all error contributions average to the maximally mixed
state 1/4, which amounts to a fraction ε of white noise added to
ρ0.
Figure 3 shows the time-resolved mean and the confidence

interval obtained from the distribution of measurement results
of this simulated experiment. Here, we follow a possible
experimental procedure in which the optimal witness parameter
is obtained by optimizing ϕ at each time step t independently
to give the maximal ⟨Wϕ⟩ for the ensemble. For each time step
we generate a sample of 1000 noisy states, for which we
optimize ϕ to maximize ⟨Wϕ⟩ and calculate the confidence
interval. We find the obtained ϕ to coincide with γ within
numerical and statistical accuracy. The mean of the obtained
distribution coincides with the exact numerical result of Wϕ

evaluated for the state (1 − ϵ)ρ0(t) + ϵ1/4, i.e., with added
white noise, within numerical accuracy.
Within the obtained error bars in Figure 3 there is the

possibility of a revival of entanglement because the confidence
region intersects with the ⟨Wϕ⟩ = 0 line twice. For an estimate
of the entanglement lifetime and its error bars as observed by
the witness, we take the last crossing of the mean and the
boundaries of the confidence interval of Wϕ with the zero-line.
The resulting magnetic field dependence of the entanglement

lifetime and the error bars are shown in Figure 4. The detailed
plot of the first jump in the entanglement lifetime (Figure 4
right) illustrates how the error bars for the entanglement

Figure 3. Confidence interval of a simulated measurement of the
optimal entanglement witness at fixed B = 3.8 mT in time steps of Δt
= 0.04 ns with ε = 3% white noise added to the quantum state. At each
time step t, the parameter ϕ is chosen such that the mean of the
ensemble of 1000 noisy realizations of ρ(t) is maximized. The mean
(solid middle line) is surrounded by a ± 2σ interval (shaded region),
noisy red (outer) lines indicate the minimal and maximal obtained
values of the simulated measurements. For comparison the dashed line
gives the exact numerical result for ρ0(t) without noise.

Figure 4. (Left) entanglement lifetime as measured in a simulated
experiment by means of the optimized entanglement witness with ε =
3% white noise (upper curves). The mean (solid) is surrounded by the
obtained confidence interval (shaded region). For comparison, the
dashed line indicates the entanglement lifetime TE of the state ρ0(t)
without added noise from Figure 1. The bottom curve quantifies the
differences between boundaries of the confidence region, i.e., the
(vertical) width of the confidence interval for TE. Data are calculated
every Δt = 0.04 ns and ΔB = 0.2 mT. (Right) details of the first jump
in entanglement lifetime at 3.87(1) mT resolved in steps of ΔB = 0.02
mT.
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lifetime translate into an error bar of the magnetic field around
which the jump occurs.
To exploit the steps in the entanglement lifetime

experimentally, it is conceivable to use the steps for calibrating
the strength of a magnetic field. When increasing the strength
of B from a value below the threshold to above the threshold, a
sudden spike in the strength of the noise ΔTE indicates the
region of B, where the jump in the entanglement lifetime TE
occurs. The value of B at which the jump occurs cannot be
more precisely fixed than the widths of the interval of magnetic
fields where the noise is increased.
Note that the error in B, as we derived it from errors ΔTE,

depends intricately on the experimentally obtained variation in
the prepared quantum states and the details of the shape of the
curve of the measured witness Wϕ(t). We expect that a more
refined analysis of the confidence interval of the entanglement
witness, e.g., including the actual distribution rather than just
considering the intersections with the zero line, yields more
details in the magnetic field dependence, such as the revival of
entanglement and thus smaller inaccuracies in the magnetic
field at which the entanglement lifetime jumps.
By scanning over different values of the error ε we observe

that larger values of ε generally have the same upper bound of
the distribution, but a decreased mean and lower bound for
each value of the magnetic field. When adding noise to the
states ρ0(t) the error contributions Δρ are usually biased
toward less entangled or separable states. In particular for the
initial state ρ0(0) = |S⟩⟨S|, which is a maximally entangled state,
all errors reduce the entanglement. For increasingly noisy states
the steps at which jumps occur shift toward higher values of B
and are increasingly washed out.
In realistic experiments the confidence interval of the

entanglement witness is not only given by the errors in the
measurement of the witness but also by inaccuracies in the
timing, i.e., errors in the time of preparation and measurement,
which add errors in the horizontal direction of the curve in
Figure 3 and may therefore additionally widen the confidence
interval for TE in Figure 4.
The spin dynamics in the present scenario is only considered

to be generated by the Hamiltonian (1). Typical decoherence
sources to the radical pair spin dynamics are dephasing and spin
relaxation mechanisms due to fluctuating hyperfine coupling
strengths, which, however, happen on time scales of ∼1 μs. On
short time scales similar to the entanglement lifetime we expect
the dominant decoherence mechanism to be caused by
stochastic radical pair re-encounters, during which the spin
dynamics includes contributions from exchange and dipolar
interactions, and influences of the reaction kinematics, which
we expect to yield qualitatively similar results (cp. Figures 3 and
4).

VI. CONCLUSION
We have revisited the existence and lifetime of entanglement of
geminate free Py−DMA radical pairs. Entanglement is a
property of the quantum state that, similar to entropy, requires
an elaborate method for its experimental detection. In a refined
simulation of the spin dynamics, we can identify a revival of
entanglement for a magnetic field strength of about 3.8 mT,
which is a clear-cut feature of the non-Markovian dynamics in
the mesoscopic spin bath formed by the nuclear spins.
We presented an optimal entanglement witness for

entanglement measurements in free radical pair systems,
which requires some knowledge about the quantum state or

an optimization over its parameter. The witness applies to all
radical pair systems, but it is tailored to radicals that start in
typical initial states and evolve under isotropic hyperfine
interactions. Possible routes for experimental implementations
may be the measurement of three static witnesses that together
effectively recover the quantum state of these systems. The
information contained in the measurement results of two of
these witnesses can also be obtained by measuring the
fluctuations of the total radical pair spin parallel and orthogonal
to the external magnetic field. Measuring lower bounds on
entanglement by means of the singlet product yield have been
discussed including the influence of the re-encounter dynamics
and reaction kinematics.
Finally, we analyzed the approach to use the entanglement

lifetime (Figure 1) as a signature to measure magnetic fields or
calibrate certain magnetic field strengths. The magnetic field
dependence of the entanglement lifetime and related quantities,
which are defined by a threshold, e.g., a singlet fraction above
1/2, show a steplike increase with increasing magnetic field
strengths. We have illustrated how errors in the primary
measurement of entanglement propagate and influence the
error in the magnetic field estimation, and we provided a
numerical example for Py−DMA radical pairs. The treatment
confirms that, despite the pronounced field dependence of the
entanglement lifetime, a physically consistent picture arises
once measurement errors are accounted for in detail. Measuring
the entanglement lifetime for magnetometry is admittedly
elaborate in comparison to other approaches.32 However, when
the more general approach is taken and considering also the
singlet fraction as a possible experimental signature (Figure 2),
which is also easier to access, the magnetic field dependence is
qualitatively similar. The singlet fraction above 1/2 does not
exhibit a revival occurring in the first step and the steps are
located at different values of the magnetic field. It is presently
an open question if the field dependence of the entanglement
lifetime, the singlet fraction above 1/2, or another similarly
defined threshold quantity is best suited for magnetic field
estimations.
We note that the scope of the current investigation for

radical pairs can also be extended beyond chemistry. For
example, there are many formal similarities between radical
pairs and quantum dot systems33 from condensed matter
physics (see ref 34 for a review) regarding the effective spin
Hamiltonian and other environment influences. Quantum dot
systems can also exhibit spin−spin entanglement,35,36 but
typically operate in different energy domains and spacial
dimensions, which allow for a better control and access to the
individual spins by means of additional bias fields. After the
completion of the present work, we learned that similar effects
of the entanglement lifetime are also expected in double
quantum dot systems.37 Although spin chemistry experiments
generally do not have the same degree of experimental access to
the individual spin system as experiments with gated double
quantum dot systems, the presented quantum mechanical
observables may stimulate further development of ESR
methods in this direction.
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